Category Archives: CAD

Happy New Year!

Here is a compilation of some of my videos/projects from the past year. Plans for 2022 are to continue to make projects I find interesting. Everything from electronics to RC stuff. I will probably start the year by working on and finishing the new balancing robot.

I want to experiment more with ArduPilot also, making a multicopter platform for some experiments, and also ground rovers or maybe a boat.

Maybe I will also experiment with some new content on my YouTube channel. New video formats/video ideas etc.

Maybe I will also post some game-development-related stuff in the coming year. It was a few years since last I posted such things. But a have actually made some stuff that I have not shared. Including a DIY Unity-based RC plane simulator.

A new self balancing robot

I started a new two-wheeled self-balancing robot project. I have built a few balancing robots before. This time, I want to make it even better. Trying out some new things while also making the robot even better documented and easier to replicate.

In this video, I make the chassis using 3D printed parts. The parts were sponsored by JLCPCB who 3D printed them for me. The parts are made out of PA-12 Nylon using MFJ 3D printing process. But those parts can also be printed using any standard filament printer you may have at home.

In later videos, I will make a PCB and show how I code and tune the robot. The robot will be remote-controlled, and also have an autonomous obstacle avoidance mode.

Here is a link to the 3D CAD files (Fustion360 files and STL files for 3D printing): http://brinkeby.se/downloads/2021%20Balancing%20Robot%203D%20CAD%20files.zip

The soft foam tires used are from RC plane wheels. I got them from this Swedish RC hobby shop: https://www.mbs-rcmodels.se/hjul/lattviktshjul-76mm-11g-2-pack/ I don’t think they ship outside of Sweden, or maybe they do. Maybe it is possible to find other tires that fit. I have also included STL files for the tires in the downloads if you want to try and print them out of TPU or similar.

I built a CNC machine

Mostly designed to make parts for RC planes from balsa wood and thin plywood. But of course, the machine can be used for other stuff as well.

Here is a page with more info about the machine: DIY mini CNC router

Here is an overview video that also shows the machining of some test parts.

In this video, I am making a few simple parts that will be used in the wing of an RC plane.

New robot project

This is a new long-term robot project I have been working on for the past couple of months. It is a general purpose indoor robot, that will work as a platform for experimentation. When designing this robot, I have tried to think about and improve everything I have learned from previous robot projects I have made. But this robot will also feature some new stuff I have not tried before. Some of the key features if the robot includes:

  • Stepper motor based four-wheel-drive skid-steering drive system
  • Big Li-Ion battery
  • A lot of custom 3D printed parts
  • Heavy duty bumpers, large ground clearance and large foam wheels
  • Raspberry Pi main computer
  • Arduino Due for controlling low-level peripherals
  • Scanning Lidar sensor
  • Probably a Raspberry Pi camera module mounted on a pan/tilt system

So far, only the majority of the mechanical work is done. Here are a few images, click on them to make them larger:

DIY 3D printer detailed overview

This video is a detailed overview of my DIY coreXY 3D printer. It is just over a year since I built it. Some things have changed since then, but most of the machine it the same. This is my first and only 3D printer, I use a few times a week, sometimes more often than that. The printer works very well, it produces high-quality parts while requiring very little maintenance.

Link to 3D printer page: DIY 3D printer

3D printing a fidget spinner

This video shows the process of 3D printing and assembling a fidget spinner. I have designed the spinner using Autodesk Inventor. The spinner is slightly asymmetric, making it easy and comfortable to start it. I use a ceramic ball bearing in the centre and normal bearings as weights. I always use Cura to slice my parts before 3D printing. To print in different colors, I manually edit the generated G-code file using Notepad++. Cura automaticly puts a comment in the G-code file at the start of each new layer. I use the search function to find a specific layer and insert a couple commands to lower the printbed and pause the machine so I can change the filament.

The STL files for the spinner is available on Thingiverse here.

DIY FPV goggles

When I wanted to get into FPV a couple of moths ago I bought the Eachine EV800 FPV goggles with built in VTX and battery. I liked the idea that they could be used as goggles, and also as a screen. However, when that arrived I realised that they were very uncomfortable to wear, and I was not able to wear my normal glasses under them as I had intended. Therefore I only used the screen to start with.

I was not completely happy with the screen experience, I still wanted to have googles. Therefore I started to design my own goggle-part. I started with making a four part assembly in SketchUp to snap into the existing mount on the EV800, and also to hold the fresnel-lense in place. I 3D printed the parts, glued them together, and they fit perfectly. Since the shape of the rest of the goggles is very complicated, I thought it would be very time-consuming to design and 3D print everything. Therefore I built the rest of the goggles using cardboard, paper and hot glue. To make it look better and be more comfortable to wear I covered the entire thing in fabric, using more hot glue. I kept the part touching the face as large as possible to make them fit over my glasses. I finished off the design with some 3D printed parts to mount the original head strap from the EV800. I am pretty satisfied with the result. Now the goggles are comfortable, fits over my glasses, and is comfortable to wear. And I can still remove the screen from the goggles is I want.

All STL files for 3D printing are available for download here: DIY_FPV_goggles.zip

1200_DSC_7036

Click “Continue reading” for more images.

Continue reading